Block Triangular Orderings 1 Block Triangular Orderings and Factors for SparseMatrices in

نویسنده

  • Roger Fletcher
چکیده

Sparse matrix methods for factorizing a nonsingular matrix are considered. The possibility of using the little known technique of implicit LU factors is explored, particularly in the context of simplex-like methods for Linear Programming. The concept of a spike-preserving ordering is introduced and a new method for calculating such an ordering is described, based on the recursive use of Tarjan's algorithm for block triangularization. Experiments are described in which the new method is compared to that based on the use of Markowitz orderings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0168-9274(98)00133-0

Incomplete factorization preconditioners based on recursive red–black orderings have been shown efficient for discrete second order elliptic PDEs with isotropic coefficients. However, they suffer for some weakness in presence of anisotropy or grid stretching. Here we propose to combine these orderings with block incomplete factorization preconditioning techniques. For implementation considerati...

متن کامل

A Large-Grain Parallel Sparse System Solver

The eeciency of solving sparse linear systems on parallel processors and more complex multicluster architectures such as Cedar is greatly enhanced if relatively large grain computational tasks can be assigned to each cluster or processor. The ordering of a system into a bordered block upper triangular form facilitates a reasonable large-grain partitioning. A new algorithm which produces this fo...

متن کامل

Some Remarks on Structural Matrix Rings and Matrices with Ideal Entries

Associating to each pre-order on the indices 1; :::;n the corresponding structural matrix ring, or incidence algebra, embeds the lattice of n-element pre-orders into the lattice of n n matrix rings. Rings within the order-convex hull of the embedding, i.e. matrix rings that contain the ring of diagonal matrices, can be viewed as incidence algebras of ideal-valued, generalized pre-order relation...

متن کامل

Pestana, Jennifer (2014) On the eigenvalues and eigenvectors of block triangular preconditioned block matrices. SIAM Journal on Matrix

Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related.

متن کامل

Characterization of the Ranking Indices of Triangular Fuzzy Numbers

We find necessary and sufficient conditions for a ranking index defined on the set of triangular fuzzy numbers as a linear combination of its components to rank effectively. Then, based on this result, we characterize the class of ranking indices which generates orderings on triangular fuzzy numbers satisfying the basic requirements by Wang and Kerre in a slightly modified form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997